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As everyone knows, the derivative method  of exponential function )(
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1)()( xuxuxF   （ 0)(2 xu ）is more 

complex, with the help of logarithmic identity or logarithmic derivative method available:  
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This formula is difficult to memorize, seems to have no rules to follow, but through the observation we found an 
interesting phenomenon, 2
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1 uuu u    is the derivatives of 1u  which is regarded as constant in )(xF , 212 ln1 uuu u   is 
the derivatives of 2u  which is regarded as constant in )(xF . In general, it can be summed up the following 
proposition for the generalized power exponential function. 
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So nnnnn fffxF  21)(    （2）, nif  is the derivatives of 1u  when it is only regarded as variable and the 
others are all regarded as constants in )(xF . 
 

 
Proof：Using mathematical induction, when 2n , by（1）, let kn  , that is kkkkk fffxF  21)(    
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If（3） is substituted and induced,  ikf 1
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 kif 1ln ku  （ ki ,2,1 ）, so（2）holds. 
 
Proposition holds for the principle of mathematical induction. 

Example：For the derivatives of function x
x
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Method: Regarding )1( x  and xsin  as constant, derived 1f
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Regarding bottom function x  and xsin  as constant, derived 2f xxx xxx
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Regarding bottom function x and )1( x  as constant, derived 3f )1ln(lncos)1( sin)1(
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So )(xf  = 1f 2f 3f  
 


