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Abstract 
 

A new discrete distribution with two parameters is introduced and discussed. We present its derivation after 

identifying the generator mechanism of the mass probability function. Then we show its flexibility in terms of 

dispersion index and show how to estimate the parameters by maximum likelihood. Finally, we compare it to 

traditional as well as flexible discrete distributions using some popular insurance datasets. The AIC and BIC 

criteria strongly suggest that the new distributions is able to provide a fit to discrete data in a very satisfactory 

way. 
 

1. Introduction 
 

The prediction of insurance claims is one of the most important problems faced in the insurance industry. 

Companies need statistical models able to provide a probability law to the number of claims based on a discrete 

distribution, given the discrete nature of claims.The choice of a discrete statistical distribution is a very critical 

point, because the sensitiveness of the prediction to the statistical model can be highly considerable.The Poisson 

and the Negative Binomial are the most important discrete distributions able to represents the number of claims. 

However, in many cases, these distributions do not provide satisfactory results, especially under the circumstance 

that a high number of zeros occurs.The search for alternative discrete distributions has enriched the literature in a 

remarkable way. The article is organized as follows. Section 2 presents the most popular discrete distributions, 

while in Section 3 we propose a novel discrete distribution which is theoretically compared to the most traditional 

alternatives. Finally, in Section 4 an application to some popular insurance data shows the relevance of the 

proposal. Some concluding remarks will close the article. 
 

2. Discrete distributions 
 

The analysis of the most important discrete random variables is carried out following a unified approach 

considering the convergent numerical series with positive terms as the generator mechanism of the mass 

probability function. In particular, this approach can shed light on therelationship between the probability laws for 

discrete random variables with infinite support and the numerical series. 

Actually, a general probability function for a discrete random variable Y could be written as  

𝑃 𝑌 = 𝑦 =
𝑓(𝑦; 𝜽)

 𝑓(𝑗; 𝜽)∞
𝑗=0

 

where 𝜽is the parameter vector, possibly constrained to ensure that 𝑓(𝑗; 𝜽) be convergent with positive values, 

and f denotes a mathematical function. 
 

2.1 Poissondistribution 
 

The Poisson distribution is certainly the most popular discrete distribution. Its probability function is given by 

𝑃 𝑌 = 𝑦 =
𝑓(𝑦; 𝜇)

 𝑓(𝑗; 𝜇)∞
𝑗=0

=

𝜇𝑦

𝑦!

 
𝜇 𝑗

𝑗 !
∞
𝑗=0

=
𝑒−𝜇𝜇𝑦

𝑦!
 

In this case,the series  with has positive values and it is straightforward to show that converges 

to𝑒𝜇 .It is characterized by an expected value equal to the variance, so that the dispersion indexD 

𝐷 =
𝜎2

𝜇
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that is the ration between variance and expected value, is always unit. This constraint is a serious drawback in 

practical applications. 

2.2 Poisson–Lindleydistribution 
 

The Poisson-Lindley distribution has been introduced by Sankaran (1970) as a discrete distribution for count data. 

It comes from the Poisson distribution with the parameter 𝜇 > 0 following the Lindley distribution with density 

function 

𝑓 𝜇; 𝜃 =
𝜃2

𝜃 + 1
(1 + 𝜇)𝑒−𝜃𝜇  

with  𝜃 > 0. 

So it belongs to the class of mixed Poisson distributions.
 

It is interesting to note that an alternative genesis of this distribution is given by the following convergent series 

with positive values, function of the parameter 0 : 
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The dispersion index is given by 

𝐷 =
𝜃3 + 4𝜃2 + 6𝜃 + 2

𝜃2(𝜃 + 1)2
∙
𝜃 𝜃 + 1 

𝜃 + 2
=

𝜃3 + 4𝜃2 + 6𝜃 + 2

𝜃 𝜃 + 1 (𝜃 + 2)
 

As a result, the index is never below 1, that is 𝐷 ≥ 1, ∀𝜃 > 0, so the Poisson-Lindley can never adaptin case of 

under-dispersion. 
 

2.3 Conway-Maxwell Poisson distribution 
 

The Conway-Maxwell Poisson (CMP) is a generalization of the Poisson distribution introduced by Conway and 

Maxwell (1962) in a queue theory context. It depends on two parameters, 𝜆 > 0  and𝜐 > 0 .The probability 

function is defined as 

𝑃 𝑌 = 𝑦 =
𝑓(𝑦; 𝜽)

 𝑓(𝑗; 𝜽)∞
𝑗=0

=

𝜆𝜐

(𝑦!)𝜐

 
𝜆𝑗

(𝑗 !)𝜐
∞
𝑗=0

 

where 𝜽 = [𝜆, 𝜐]′. In order to compute this probability function, the normalizing constant  𝑓(𝑗; 𝜽)∞
𝑗=0  has to be 

computed. A practical approach is its truncation after the k-th term, obtaining 

 𝑓(𝑗; 𝜽)

∞

𝑗 =0

=  
𝜆𝑗

(𝑗!)𝜐
+ 𝑅𝑘

𝑘

𝑗 =0

 

where 𝑅𝑘 =  
𝜆𝑗

(𝑗 !)𝜐
∞
𝑗 =𝑘+1   is the absolute error due to the truncation. 

The dispersion index of the CMP distribution can allow for over-dispersion (in this case0 < 𝜐 < 1), equi-

dispersion (𝜐 = 1, and the CMP collapses to a Poisson distribution with parameter  ) and under-dispersion 

(𝜐 > 1). 
 

2.4 Negative Binomial Distribution 
 



International Journal of Business and Social Science     Vol. 9 • No. 12 • December 2018     doi:10.30845/ijbss.v9n12p7 

 

59 

The Negative Binomial distribution depends on two parameters, N and P. The probability function  is      
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with𝑁 > 0 and 𝑃 > 0. 

Its ability to adapt to real data finds a limitation in the dispersion index  

𝐷 =
𝑃 + 1

𝑃
 

which is greater than 1, only allowing for the case of over-dispersion. 
 

3 A newdistribution 
 

A newdiscrete distribution is proposed starting from the series with generic term given by 

𝑓(𝑗) =
(1 + 𝑗)𝑎

(1 + 𝑐)𝑗 +
1

1+𝑗

 

with 𝑎 ∈ ℛ and 0c . It has positive values and is convergent.In fact, using the ratio criterion, we have 
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Using this convergent series,a novel probability distribution can be generated, that is 

𝑃 𝑌 = 𝑦 =
𝑓(𝑦; 𝜽)

 𝑓(𝑗; 𝜽)∞
𝑗=0

=
1

𝐶(𝑎, 𝑐)
∙

(1 + 𝑦)𝑎

 (1 + 𝑐)𝑦 +
1

1+𝑦
 
 

where𝜽 = [𝑎, 𝑐]′ and 

𝐶 𝑎, 𝑐 =  
(1 + 𝑗)𝑎

 (1 + 𝑐)𝑗 +
1

1+𝑗
 

∞

𝑗 =0

 

The value of ),( caC depends on the parametersaandc. In particular, when cincreases, the function ),( caC  

decreases, while the relationship with the parameters a depends on the sign of a.When a> 0, fixed c, ),( caC

increases when a increases. When a is negative, the inverse relationship holds. 

Figures 1 and 2 show the shape of the probability function: 
 

- varying a for a given value of c; 

- varying c for a given value of a. 

 
Figure 1 – Probability function with 𝑐 = 2,𝑎 = −3 (black), 𝑎 = 0 (red), 𝑎 = 3 (green). 
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Figure 2 – Probability function with 𝑎 = 3,𝑐 = 8 (black), 𝑐 = 2 (red), 𝑐 = 0.5 (green). 

 

The computation of ),( caC  compels to truncate the series at a high value J (in the application the sum will be 

computed up to J = 50000). 

The expected value is given by   
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It has no closed form, but can be expressed by a convergent series. In fact, keeping in mind the ratio criterion, the 

series with general term given by 
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Considering that the variance is  
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the dispersion index is given by  

𝐷 =

 
(𝑦−𝐸 𝑌 )2 ∙(1+𝑦)𝑎

 
1

1+𝑦
+(1+𝑐)𝑦  

∞
𝑦=0

 
𝑦∙(1+𝑦)𝑎

 
1

1+𝑦
+(1+𝑐)𝑦  

∞
𝑦=0

 

The index D can assume values both greater than 1 and lower than 1.The proposed distribution is then a very 

flexible probabilistic model that can model both over-dispersion and under-dispersion. Figure 3 shows the flexible 

behavior of the dispersion index when parameter c varies, given some fixed values of a.  
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Figure 3 – Dispersion index with 𝑎 = −3 (black),  𝑎 = 3 (green). 

 

In the estimation step, we have to take into account a parameter constraint, which concerns the parameter c, which 

has to be positive.The log-likelihood given by  
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includes the quantityC(a,c)which has to be considered after truncating the series. 

The system of equations for the log-likelihood solutions is 
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and is solved using iterative methods. 
 

4 Applications to real datasets 
 

The various discrete distributions here considered have been evaluated in their ability to adequately fit counting 

variables.The analysis has been carried out using six automobiles insurance datasets relating to different countries 

/ years and concerning the annual number of claims per policy. The datasets has already been used in Denuit 

(1997). It contains the data of four countries (Belgium for years 1958, 1975/1976 and 1994, Germany for year 

1960, Switzerland for year 1961 and finally Zaire for year 1974). The main features of these datasets are 

summarized in Table 1. Two remarkable features arethe over-dispersion and the presence of a high percentage of 

zeros, from 82% to over 92%, for all the datasets. The range, equal to the maximum value, is low for each dataset. 

Considering the enormous importance in the industrial countries of motor vehicles insurance for civil liability 

towards third parties, in the statistical and actuarial literature special attention has to be paid to the search for an 

appropriate probabilistic modelto model the distribution of the number of road accidents in which a motorist has 

incurred in a given period of time or the annual number of claims per policy presented to the insurance company. 

The performance of the different distributions has been evaluated using statistical indices able to take into account 

the number of parameters to be estimated, the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC). The AIC proposed in Akaike (1974) is given by 

𝐴𝐼𝐶 = −2 ln 𝐿 + 2𝑟 

where ln 𝐿  denotes the log-likelihood and r is the number of parameters, while the BIC (Schwarz, 1978) is  

𝐵𝐼𝐶 = −2 ln 𝐿 + 𝑟ln(𝑛) 
 

wheren is the number of observations. The best model is the model presenting the lowest value of AIC or BIC. 

In Tables 2-7,𝜃1 denotes the unique parameter in Poisson and Poisson-Lindely probability functions. For CMP, 

Negative Binomial and novel distribution 𝜃1 denotes parameter 𝜆, N and a, respectively, while 𝜃2 denotes the 

second parameter, that is 𝜐, P and c. 
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Table 2 (Belgian data, 1958) shows that the Poisson distribution has a very bad performance and is very distant 

from the remaining distributions in terms of AIC and BIC. According to the two indices, the novel distribution 

provides the best fit to the data and its principal competitor is the Negative Binomial.Table 3 (German data, 1960) 

indicates that according both to the AIC and to the BIC the winner probabilistic model turns out to be the novel 

distribution. Table 4 (Swiss data, 1961) confirms what we have found for the two datasets, that is the prominent 

role of the novel distribution which again ensures the most satisfactory fit of the data in terms of AIC and BIC.In 

Table 5 (Zairian data, 1974) the distribution here proposed provides better results for both the criteria.Tables 6 

and 7 (Belgian data, 1975/1976 and 1994) provideevidences that do not deviate from the main previous results, 

that is the best fit is reached using the novel distribution, followed by the Negative Binomial distribution. Finally, 

Tables 8 and 9 summarize the AIC and BIC values. 
 

 

 

Belgium 

(1958) 

Germany  

(1960) 

Switzerland 

(1961) 

Zaire  

(1974) 

Belgium 

(1975/76) 

Belgium 

(1994) 

Observations 9461 23589 119853 4000 106974 131182 

Average 0,2143 0,1442 0,1551 0,0865 0,1011 0,1036 

Variance 0,2889 0,1639 0,1793 0,1225 0,1074 0,1115 

Dispersion index 1,3478 1,1362 1,1558 1,4164 1,0630 1,0764 

Percentage of 0’s 0,8287 0,8729 0,8653 0,9297 0,9066 0,9048 

Range 7 6 6 5 4 4 

Table 1 – Descriptive statistics for the six datasets 

 

 𝜃 1 𝑠. 𝑒. (𝜃 1) 𝜃 2 𝑠. 𝑒. (𝜃 2) AIC BIC 

Poisson 0,2144 0,0048 - - 10983,56 10990,71 

Poisson-Lindley 5,3998 0,1182 - - 10714,56 10721,71 

CMP 0,1765 0,0049 0,0000 0,0715 10713,36 10727,67 

NB 0,7014 0,0628 0,3056 0,0284 10696,08 10714,39 

New distribution -1,8856 0,1377 1,7722 0,2388 10693,83 10708,14 

Table 2 – Estimation results for Belgiandata (1958) 

 

 𝜃 1 𝑠. 𝑒. (𝜃 1) 𝜃 2 𝑠. 𝑒. (𝜃 2) AIC BIC 

Poisson 0,1442 0,0025 - - 20597,69 20605,76 

Poisson-Lindley 7,7279 0,1297 - - 20449,76 20457,83 

CMP 0,1274 0,0026 0,0599 0,0684 20451,22 20467,36 

NB 1,1175 0,1194 0,1291 0,0140 20450,84 20466,98 

New distribution 4,2311 0,0495 0,7316 0,0271 20447,28 20453,35 

Table 3 – Estimation results for German data (1960) 

 

 𝜃 1 𝑠. 𝑒. (𝜃 1) 𝜃 2 𝑠. 𝑒. (𝜃 2) AIC BIC 

Poisson 0,1551 0,0011 - - 110218,90 110228,59 

Poisson-Lindley 7,2292 0,0519 - - 109231,40 109243,09 

CMP 0,1346 0,0012 0,0119 0,0276 109235,00 109254,39 

NB 1,0328 0,0436 0,1502 0,0065 109234,60 109253,99 

New distribution 4,0613 0,0192 0,7013 0,0112 109223,18 109242,57 

Table 4 – Estimation results for Swiss data (1961) 

 

 𝜃 1 𝑠. 𝑒. (𝜃 1) 𝜃 2 𝑠. 𝑒. (𝜃 2) AIC BIC 

Poisson 0,0865 0,0046 - - 2494,15 2500,45 

Poisson-Lindley 12,4367 0,6547 - - 2417,30 2423,60 

CMP 0,0796 0,0047 0,0000 0,2589 2418,85 2431,44 

NB 0,2166 0,0364 0,3993 0,0717 2371,10 2383,69 

New distribution 4,5349 0,0971 0,2277 0,0981 2372,23 2384,82 

Table 5 – Estimation results for Zairian data (1974) 
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 𝜃 1 𝑠. 𝑒. (𝜃 1) 𝜃 2 𝑠. 𝑒. (𝜃 2) AIC BIC 

Poisson 0,1011 0,0010 - - 72378,51 72388,09 

Poisson-Lindley 10,7345 0,1010 - - 72247,06 72256,64 

CMP 0,0951 0,0010 0,2982 0,0500 72213,01 72232,17 

NB 1,6295 0,1474 0,0620 0,0056 72212,20 72231,36 

New distribution 5,1799 0,0404 0,8682 0,0164 72211,52 72230,68 

Table 6 – Estimation results for Belgian data (1975/1976) 

 

 𝜃 1 𝑠. 𝑒. (𝜃 1) 𝜃 2 𝑠. 𝑒. (𝜃 2) AIC BIC 

Poisson 0,1036 0,0009 - - 90455,12 90474,69 

Poisson-Lindley 10,4888 0,0880 - - 90184,50 90194,28 

CMP 0,0963 0,0009 0,2030 0,0425 90164,34 90183,91 

NB 1,3812 0,0992 0,0750 0,0054 90163,16 90182,73 

New distribution 5,0560 0,0387 0,8325 0,0160 90160,54 90180,11 

Table 7 – Estimation results for Belgiandata (1994) 

 

  

Belgium 

(1958) 

Germany 

(1960) 

Switzerland 

(1961) 

Zaire  

(1974) 

Belgium 

(1975/1976) 

Belgium 

(1994) 

Poisson 10983,56 20597,69 110218,90 2494,15 72378,51 90455,12 

Poisson-Lindley 10714,56 20449,76 109233,40 2417,30 72247,06 90184,50 

CMP 10713,46 20451,22 109235,00 2418,85 72213,01 90164,34 

NB 10700,08 20450,84 109234,60 2371,10 72212,20 90163,16 

New distribution 10693,83 20447,76 109223,96 2370,95 72211,68 90160,44 

Table 8 – Summary of AIC criterion 

 

  

Belgium 

(1958) 

Germany 

(1960) 

Switzerland 

(1961) 

Zaire  

(1974) 

Belgium 

(1975/1976) 

Belgium 

(1994) 

Poisson 10990,71 20605,76 110228,59 2500,45 72388,09 90464,90 

Poisson-Lindley 10721,71 20457,83 109243,09 2423,60 72256,64 90194,28 

CMP 10727,77 20467,36 109254,39 2431,44 72232,17 90183,91 

NB 10714,39 20466,98 109253,99 2383,69 72231,36 90182,73 

New distribution 10708,14 20453,35 109242,57 2383,54 72230,84 90180,01 

Table 9 – Summary of BIC criterion 

5 Conclusions 
 
 

In this article a new discrete distribution is proposed. Its main feature is the flexibility to adapt to many datasets 

using two parameters. It allows for a dispersion index taking into account both underdispersion and 

overdispersion. The distribution is compared to traditional (Poisson and Negative Binomial) and flexible 

(Poisson-Lindley and CMP) discrete distribution, using popular insurance datasets already analyzed in literature. 

The best fit in terms of AIC and BIC is always achieved with our proposed distribution which appears to be very 

promising for any discrete dataset. 
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